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Forum Editorial

Lessons from Redox Signaling in Plants

CHRISTINE H. FOYER! and JOHN F. ALLEN?

ALL LIVING ORGANISMS are oxidation—reduction (redox)
systems. They use anabolic, reductive processes to
store energy and catabolic, oxidative processes to release it. It
is plants that set this global wheel in motion. By harnessing
light energy to drive biochemistry, photosynthetic organisms
have perfected the art of redox control. Indeed, it is now
widely accepted that redox signals are key regulators of plant
metabolism, morphology, and development. These signals
exert control on nearly every aspect of plant biology from
chemistry to development, growth, and eventual death. It is
therefore timely and appropriate that the current state of sci-
entific advancement is assessed and reviewed in this volume.
We suggest that “redox signaling” was the first type of sen-
sory regulation that evolved in nature, because it prevented
uncontrolled “boom and bust” scenarios in energy availabil-
ity, utilization, and exchange. There followed further path-
ways of redox control through regulation of gene expression
at many levels. It is likely that intermediates and other sys-
tems of signal transduction arose from this central core. In
eukaryotic plants and algae, the green, cytoplasmic organelle
of photosynthesis is the chloroplast. This forum issue offers
an opportunity to dissect the complex systems of plant redox
control, particularly the systems in the chloroplast that sense
redox changes and control redox homeostasis.

Plants are autotrophic organisms powered by photosynthe-
sis. Photosynthesis is light-driven redox chemistry, and it
should be no surprise that redox signals from the light reac-
tions of photosynthesis initiate profound changes in gene
function (7). These changes encompass posttranslational
modification of proteins by phosphorylation (8), redox mod-
ulation of assimilatory reactions (24, 25), and control of gene
transcription and translation (10, 12, 17, 23). Interestingly,
photosynthetic control of gene expression can now be de-
scribed for the genes located in chloroplasts themselves, at
both transcriptional (17) and posttranscriptional (10) levels.
Redox signals also leave the chloroplast to provide a decisive
input into transcriptional control in the cell nucleus (23).

The persistence of redox control of gene expression within
chloroplasts (17,22) is evidence that redox signaling is the pri-
mary function of the chloroplasts small, specialized, but vital

cytoplasmic genome (2, 6). Mitochondria, like chloroplasts,
originated as bacterial endosymbionts, and retain their own
genomes. Redox signaling as the function of the mitochondrial
genome (2) has wide implications that extend beyond plant bi-
ology into subjects such as aging and evolution of sex (3). The
“free radical” and “mitochondrial” theories of aging (3) have
consequences for the technology of somatic cloning, where
human, reproductive clones should be expected to age prema-
turely for the same reason as “Dolly,” the cloned sheep (5).
Around two billion years ago, molecular oxygen became
intimately involved with the essential energy exchange reac-
tions on which life is based, allowing use of the very high
electrochemical potential (E , = +815 mV) of the O,/H,O
redox couple. Cyanobacteria, the prokaryotic cousins of plant
chloroplasts, created the Earth’s oxygen-rich atmosphere
through oxygenic photosynthesis (11). Oxygenic photosyn-
thesis and aerobic respiration now deal with concerted, four-
electron exchange between water and oxygen, without release
of reactive, partially reduced intermediates. However, many
processes in plants catalyze only partial reduction of oxygen,
and so generate superoxide, hydrogen peroxide (H,0,), and
hydroxyl radicals. Photosynthesis has a high capacity for the
production of these active oxygen species (AOS) and also sin-
glet oxygen, but the intracellular levels of these oxidants are
tightly controlled by an antioxidant system, comprising a net-
work of enzymatic and nonenzymatic components (13, 18).
In most cases, such defense reactions are linked to the two
major redox buffers of plant cells, ascorbate and glutathione
pools (18). The essential photoelectrochemistry of photosyn-
thesis first evolved in an anaerobic world (11). Photosynthe-
sis produces superoxide as result of direct electron transfer to
oxygen (4, 13, 14). However, quantitatively it is the source of
even greater amounts of H,0, by virtue of the glycolate oxi-
dase reaction of photorespiration (20). It is important to note
that photosynthesis generates reductants with potentials far
lower than even the most reducing part of the mitochondrial
respiratory chain, the donor couple NADH/NAD+* (E ., =
—324 mV). Electron flow from chloroplast photosystem I
(primary acceptor, E_, < —900 mV) to oxygen is thermody-
namically favorable for reduction of oxygen to superoxide
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(E,; = —330 mV). Bipyridyl mediators such as paraquat
(methyl viologen) have long been known to remove almost all
kinetic barriers to this lethal electron flux (1). On a scale of
oxidative stress, such herbicidal action on plants in normal
sunlight surely ranks second only to incineration.

Redox signals are central to defense responses and cross-
tolerance phenomena, enabling a general acclimation of
plants to stressful conditions (21). H,0, has long been recog-
nized as a signal-transducing molecule in the activation of de-
fense responses in plants. It mediates intra- and extracellular
communication during plant reactions to pathogens, and sev-
eral studies have suggested a role in systemic acquired resis-
tance. It is involved in the adaptation of leaves to high light.
H,0, has a strong regulatory influence on fluxes through Ca2*
channels and on Ca?* concentrations indifferent cellular com-
partments.The role of mitogen-activated protein kinases in
oxidative stress signaling has recently been demonstrated in
the model plant Arabidopsis thaliana (15).

H,0, is a secondary messenger in many hormone-mediated
events, such as stomatal movement, cell growth, and tropic
responses (21). Hence, redox signals interact closely with
other signaling systems. They also influence and modify the
action of secondary messengers, such as nitric oxide. It also
now appears that the simultaneous generation of nitric oxide
and AOS is required to trigger cell death cascades in response
to pathogen attack (12).

Plants are much more tolerant of H,O, than animals, and
their antioxidant systems appear to have been designed to en-
sure control of the cellularredox state rather than to facilitate
the complete elimination of H,0, (18-20, 26). Ascorbate,
glutathione, and associated antioxidant enzymes determine
the lifetime of H,0, in planta (15). Plant cells are strongly
redox-buffered and contain very large quantities of ascorbate
(10-100 mM) and glutathione (1-10 mM) (18). Most of their
intracellular compartments hence have the capacity to deal
with even very high fluxes of H,0O, production (18). Rapid
compartment-specific differences in redox state (and hence
signaling) that influence the operation of many fundamental
processes in plants can be achieved by modifying AOS (par-
ticularly H,0,) production or by repressing or activating an-
tioxidant defenses. Recent evidence suggests that glutathione
and ascorbate are key components of redox signaling in
plants (9, 15, 19, 21). Specific compartment-based signaling
and regulation of gene expression can be achieved via differ-
ential compartment-based changes in either the absolute con-
centrations of ascorbate and glutathione or the ascorbate/
dehydroascorbate and GSH/GSSG ratios, which are very high
and stable in the absence of stress (9, 13, 19).

The original articles and authoritative reviews that consti-
tute this forum issue provide an account of the ultimate origin
of oxidative stress and an analysis of the steps taken to deal
with it at source. Plants have created the aerobic world in
which we live. It is therefore no surprise to find that plants
have already tackled the key problems of living with oxygen,
and found solutions in antioxidants and in redox signaling.

ABBREVIATIONS

AOS, active oxygen species; H,O

,0,, hydrogen peroxide;
redox, oxidation—reduction.
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